# CASPR<sup>TM</sup> Overview

# **CASPR™**

- Thunderbolt's Common Autonomous Sensors & Platform Readiness Framework (CASPR™) is a patent pending Modular Open Systems Architecture (MOSA) battle management aid that is scalable and highly configurable.
- CASPR orchestrates people, sensors and unmanned vehicles (UxVs) to complete mission tasks like resupply, overwatch, reconnaissance and CUAS.
- Originally developed for first responders, CASPR is currently being enhanced under Army and Navy contracts to support crewed-uncrewed teaming and CUAS capabilities.
- CASPR enhances a team's capabilities by integrating existing currently unintegrated or under integrated low-cost systems like hand-held EW CUAS systems, tactical sUAS and small mobile CUAS ELINT and radar systems.



#### **CASPR™**

## Operator

### Asset

- Operator Initiated Tasking
- Mission Task Management





- **Asset Control and Status** 
  - Human to Human
  - Autonomous / Common Controllers

#### Sense



Sensor

Initiated

**Tasking** 

Sensor Data

### Orchestration

- **Asset Selection**
- Persistence/Aggregation
- Operator Interface



Mission Task Execution











- Manage Mission Task Lifecycle



- Sensor Data
- External Controls

External COP/C2 (e.g SSDS, Aegis, Minotaur, ATAK, IBCS)

## **Mission Tasks**

- Recon
- Overwatch
- **CUAS**
- Resupply
- Visual ID
- Comms
- Leapfrog







#### Asset Orchestration and Persistence

- CASPR can select an asset to meet specific mission without understanding the specifics of the underlying platform.
- If the designated platform/effector or sensor is lost, another platform needs to satisfy that mission.
- CASPR will task the next available platform to fulfill the mission task – a next person up mindset.
- CASPR™ will evaluate available assets and pair two together to accomplish the aggregate mission tasks.
- Create virtual assets composed of dozens of platforms that represent their larger manned counterparts.



CASPR™ Asset Roster Display with Asset Status Information for Asset Management

Asset Orchestration Focuses on Completing Missions Using All Available Assets



# Complex Mission Behavior Planning - Mission Composition

Tasks can be combined to support more complex behaviors and mission objectives.

• For example, we might want to establish a forward deployed sensor picket consisting of 4 ISR platforms

(See Figure).

 Mission Tasks can be executed in real-time or saved as part of a planning activity.

- Individual mission tasks like sensing and force projection can be combined to support complex mission sets like anti-air warfare.
- Layered Approach to Asset
   Orchestration Supports Complex
   Mission Behavior Planning



Sensor Picket – 4 Simultaneous sUAVs

Mission Task List

Mission Composition Supports Both Asset Command and Control and Complex Mission Behavior Planning.



## Task Aggregation

- CASPR™ can combine similar mission tasks into more complex behaviors like an ISR picket.
- Individual Mission Tasks can be aggregated to perform more complex behaviors.
  - For Example, an operator can combine a Resupply Task with an Overwatch Task.
  - This provides the drone operators or commander with situational awareness.
- CASPR<sup>TM</sup> orchestrates available assets to accomplish the aggregate mission tasks.
- Software enabled optimization of assets to perform equivalent function of complex platforms.



Live Resupply With Overwatch Mission Task Execution

Task Aggregation Is a Force Multiplier to Achieve More Complex Missions



# Mission Task Hierarchy





# CASPR™ End Goal - Virtual Platforms



A CASPR™ Virtual Platform is a geographically dispersed set of assets orchestrated to perform the same missions as their larger manned counterparts to provide:

- Increased Standoff Range
  - High Value Assets can Operate Further from Danger
- Persistence Of Capability/Improved A0
- Reduced Costs
  - Platform Cost
  - Staffing Efficiencies
- Scalable
- Multi-Echelon
- Platform-agnostic



# **Architecture and Components**







## CASPR™ Mobile Command

Mission Map



Screenshot of Live CUAS Testing where CASPR™ was autonomously sending drones to locations of drone operators identified by a AirWarden a CUAS COMINT Platform.



## CASPR™ Mobile App

#### Situational Awareness

Displays Sensor Data from Sensor Sources and Mission Tasks

#### **Tactical Presence**

• Location, network location, device health, and end-user status fused and selfsynchronized to provide complete awareness of every endpoint.

#### **Location Services**

 Precision geospatial location sharing for outdoor use, inertial navigation location for subterranean use, and beacon support for GPS denied environments.

#### FIPS 140-2 Security

• Information security at rest and in transit using military grade FIPS 140-2 certified cryptography for authentication and encryption.

#### Rapid Adaptation

• Plugin architecture for integration of operator worn or controlled sensors.

#### Interoperable

 Built on open standards enabling interoperability between agencies and information systems.



CASPR™ Mobile App Allows Additional Flexibility and Enables Coordination of Mobile and Dismounted Assets.



## CASPR™ Rules Engine

- CASPR™'s Rules Engine provides automated decision support for operators.
- Operators Create system behaviors by combining rules evaluating internal or external data with system responses or "Actions".
- Situational Awareness add-on provides standard set of rules to evaluate track kinematics and geospatial geometries.
- Provides evaluation capabilities for complex behaviors (e.g. swarm, convoy, convergence, follow).
- Enables automated decision support to manage operations and workload to enhance decisionmaking.



CASPR™ Rules Engine provides and additional layer of capability supporting Complex Mission Behavior Planning and Integration of External Information Streams



# **CASPR** Applications



# Peregrine CASPR Orchestrated Low Cost CUAS Interceptor

# Peregrine

- Peregrine is a low-cost kinetic CUAS interceptor designed for fixed altitude launch from Aerostats, Drones or Buildings.
- Fully integrated fire control system.
  - Echodyne's EchoShield Ku CUAS Radar
  - Range: 100m 10km (depending on altitude of launch)
  - Virtual Aegis Weapon System (VAWS) technology for interceptor guidance. (Same tech used for Navy Standard Missile Guidance).
- Low-Cost Interceptor
  - \$10,000 for Blue Under \$6,000 for partial Blue
  - 8lbs Current Top Speed 320km/hr, High Maneuverability (7g)
  - Magazines for swarm defeat, multi-salvo
  - · Group 1,2 and 3 defeat
  - Kinetic intercept (no energetics) aligns with USC 130i(a)(F) use of reasonable force to disable/damage/destroy unmanned aircraft
- Ongoing Efforts
  - PD-Aerostats Exercise in Feb 2025 for CUAS In support of CENTCOM JUONS (CC-0587) – Follow-on exercises to add Aerostat Launched Effects Capability Planned but Unfunded
  - Picatinny Arsenal Seed Funding for Interceptor Prototypes and demo support from Autonomous Armaments Tech Division, DEVCOM & Automatic Test Systems Division, ARDEC
  - Interest received from CENTCOM G-2 ISR Task-Force Director and INDOPACOM J81 Innovation & Experimentation Division for sub \$15k/round defeat capability.
  - Internal (Self-Funded) Development Continuing In Parallel





# Peregrine Interceptor

- Design evolved from high-speed racing drones.
- COTS Components Simple to learn and operate
- Current Top Speed 320km/hr
  - Goal Top Speed 460km/hr
  - Capable of 7g maneuvers
  - Impact energy of 14kJ (roughly equivalent to a .50 cal round at muzzle velocity)
- Weight: 8lbs
- Payload capacity allows for a lead slug or tungsten penetrator.
- Spring Powered Tube Launch (10')
- EOIR Camera
- Encrypted COMS
- IP 54 Launch canister provides additional environmental protection
- AS9100 Production Facility Initial Capacity 400/month
  - Full Rate Production 4000/month
- Future Enhancements Would Allow Operation in GPS Denied/EM Hostile Environment
  - Interceptor Guidance does not require GPS data
  - Hardened LPI/LPD Radios would increase cost but allow operation in EM Hostile Environments.
  - · Fly By Fiber being evaluated also.
  - Advanced Low-Cost AESA radars becoming available in 2026 that will work in Jamming Environments (Lockheed ZPY-X)







# Echodyne EchoShield 4D Radar



- Low Cost\* Ku Band Radar Designed for Detection and Tracking of UAS
  - Group 1: 3 km to 5.3 km (-20 to -10 dBsm)
  - Group 2: 5.3 km to 7.2 km (-10 to -3 dBsm)
  - Group 3: 7.2 km to 12.5 km (-3 to 5 dBsm)
- Ground, building or aerostat mounted
- Provides Associated Measurement Report (AMRs) for VAWS processing.
- Software Defined Architecture Allows Rapid Enhancements

- EchoShield LEVIATHAN Classifier
  - Leviathan is a system to do scalable, rapid-iteration, machine learning classification on the EchoShield radar.
  - Collection of tools and processes to: Collect/store large amounts of real-world data, Accurately label large amounts of data, Train modern deep-learning models in the cloud with No-code deployment of trained models
  - New models with every SW release

- \*~8X cheaper then existing
  Army Ku Radars
- Track While Scan Accuracy: 0.5 deg elevation and azimuth. 3.0m range
- Dedicated Track Accuracy: 0.125 deg elevation/azimuth. 0.75m range.
- Able to Support multiple simultaneous engagements without additional sensor input.



# Intercept Concept



- Flight path established using Radar
  AMR Data
- VAWS used to manage engagement/intercept/weapons solution

**Command Guidance Phase** 

Up to 10km



VAWS guidance commands can be adjusted to align camera object with interceptor boresight (if seeker is present)

- Kille Dive to Maximize Target Area and Kinetic Energy at Impact
- High Speed and Maneuverability to Counter Collision Avoidance

Terminal Homing Phase

30m



# Multi-Salvo



- Multiple drones can be launched and controlled at the same time from magazines of launch tubes.
  - Theoretical limit of 128 simultaneous engagements per system.
    - Dependency on drone controller and radio architecture
- Salvo size dependent on radar resources and magazine size.
- CASPR can be enhanced to use multi-salvo of interceptors in formation to increase probability of kill.
- Can be staged spatially and temporally or both





# Testing and Production

- Current Development
  - Integration Testing underway
    - Interceptor proxy being controlled using radar AMR data from Echodyne Radar.
  - Initial flight tests scheduled for July/Aug using proxy drones.
  - Seeker Development In Progress Leveraging COTS And Open Source
  - Two interceptor prototypes under construction for testing in Sept.
- Interceptor Flight Tests
  - Scheduled to Start September.
  - Algorithm and system evaluation and tuning focused.



# Leapfrog – CASPR Orchestrated Forward Deployable Sensors

# Leapfrog

- Leapfrog is the patent pending concept of using CASPR to dynamically deploy sensors using sUAVs.
  - Airborne radar sensors require power, coupled with the power needed for flight, any airborne radar on an sUAV would have very limited flight time (order of minutes).
  - Landing the sUAV and operating the sensor from the ground allows several hours of sensor operation.
  - sUAVs can be repositioned on demand to relocate sensor resources as needed.
  - CASPR provides orchestration and persistence of the desired distributed sensor configuration.
- Leapfrog is not limited to sUAVs. The same concepts can be applied to uncrewed surface and subsurface vehicles.



Leapfrog (cont)



**Example Leapfrog UAV with** R-20 Radar



**CASPR** Dynamically **Positioned Radars** 





**R20** 

120° x 60°

± 2°

1-8 m

750-1000 m

1300\* m

1900\* m

3000\* m

3000\* m

Technology

R30

± 1°

FMCW Phased Array

0.15 m/s or less

1-16 m

2000-2500 m

3300 m

5000\* m

8000 m

8000\* m

R40° (2024)

± 0.5°

2-16 m

3750-4250 m

5000-5500\* m

8000\* m

13000\* m

13000\* m

120° x 120° 15.4-16.6 GHz (Ku Band)

16



# Leapfrog RF Decoy Orchestration

**CASPR** 

- Disposable programable radio
  - Low Cost
  - Emulate Multiple RF signatures
    - Tactical Radios
    - Bluetooth
    - Wifi
    - Cellular
    - Radars
    - Drone C2
  - US Manufactured "Blue"









# "Drone Phone" – CASPR Orchestrated Forward Deployable Emission Free Communications

#### Comms Mission: The Drone Phone

Emission-less Long-Range Communications System





# Comms Mission

- "Drone Phone" Concept Not Limited To Voice Comms
- Combined with Leapfrog
  - Emission free deployment of sensors and decoys
  - Emission free backhaul of sensor data.
  - Potential for Big Pipe for large data rates (e.g. radar data)



# PD-Aerostats Exercise in Feb 2025 for CUAS In support of CENTCOM JUONS (CC-0587)



### **CASPR CUAS Mission Task with Dronebuster**



# CASPR Visual ID Mission Task



# **Commercial Applications**

# Maritime Incident Response



- CASPR being utilized by Gallagher Marine to orchestrate multiple assets.
  - Cleanup Vessels
  - Spill/Slick detection
  - Team Communications
  - Federal, State, Local Unit Integration/Coordination
  - Coast Guard
     Integration/Coordination

